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9. CARDINAL NUMBERS 
 

§9.1. Equivalence of Sets 
Most facts in the last few chapters will be well-

known to you. The novelty was in redeveloping them 

within ZF set theory. We now turn our attention to infinite 

set theory itself. We begin with infinite cardinal numbers. 

We can’t count infinite sets in the same way as we 

do finite sets. We need a definition of the size of a set 

which, on the one hand agrees with our existing concept 

for finite sets, but which applies to infinite sets as well. 

Do we simply invent a number, , that we assign 

to all infinite sets? (Of course there remains the question 

of how we formally define ‘finite’ and ‘infinite’.) We’re 

perfectly entitled to do this but we would miss out on the 

interesting theory of transfinite numbers. We’d be in the 

same position of a certain tribe of aborigines who, it has 

been falsely claimed, had no word for numbers after 

‘three’. They were 

supposed to count 

“one, two, three, 

many”. 

 

 Turn your 

mind back to the 

days when you first 

learnt to count. In 

kindergarten, we 
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pointed to things, or pictures of things, as we said aloud 

“one, two, three …”. Essentially we were setting up a 1-1 

correspondence between the things and a set of numbers 

that we learnt. If we got up to ‘five’ then we said that the 

number of things was five. 

The concept of same-number-as is more 

fundamental than numbers themselves. A glance around 

a classroom of able-bodied people can reveal quickly that 

there’s the same number of left arms as right arms. We 

don’t need to count the left arms and the right arms and 

say “there are 27 left arms and 27 right arms so there must 

be the same number of each”. 

 

Recall that a bijection is a function that is 1-1 and 

onto. Two sets X, Y are equivalent (X  Y) if there is a 

bijection F:X→Y. 

 

Clearly  is an equivalence relation since it is 

reflexive, symmetric and transitive.  However it’s actually 

a generalised relation rather than a relation in the sense of 

a set of ordered pairs on the set of all sets, because there’s 

no such thing as the set of all sets. Such an entity would 

give rise to the Russell Paradox. 

 

 Given a set S, how can we define its size, or 

cardinal number? As we saw in the last chapter, 

equivalence classes are out. We might think of choosing 

one particular representative of each size. That’s what 

we’ll do to begin with for finite numbers and the smaller 
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cardinal numbers, but as a general technique it has the 

problem of choosing a representative. We will need an 

additional axiom to do this. Let’s postpone this problem 

and explore the basic facts about equivalence of sets. 

 

Theorem 1: If A  C and B  D and A, B are disjoint and 

C, D are disjoint then A  B  C  D. 

Proof:  Let F:A → C and G:B → D be bijections. Define 

H:A  B → C  D by: 

H(x) = 


F(x) if x  A

G(x) if x  B
 . 

The fact that A, B are disjoint means that H is well-

defined. The fact that C, D are disjoint means that H is 1-

1. It’s clearly onto. ☺ 

 

Theorem 2: If A  C and B  D then A  B  C  D. 

Proof: Suppose F, G are as above. 

Define H:A  B→ C  D by: 

H((x, y)) = (F(x), G(y)).  It’s easy to check that this is a 

bijection. ☺ 

 

Theorem 3:  A  B → (A)  (B). 

Proof: Let F:A → B be a bijection. 

Define H:(A) → (B) by: 

H(S) = {F(x) | x  S} for all S  (A). ☺ 

 

 Size need not be preserved under intersections, 

however, as the following example shows. 
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Example 1: Let A = {1, 2, 3}, B = {2, 3, 5}, 

                           C = {1, 2, 3}, D = {3, 4, 5}. 

Then A  C and B  D but A  B = {2, 3} is not 

equivalent to C  D = {3}. 

 

 It’s intuitively obvious that if we have two 

equivalent sets, and take one element from each, the 

remaining sets will be equivalent. It’s certainly obvious 

for finite sets but we want to show that it holds for infinite 

sets as well. 

 

Theorem 4: If A  B and a  A, b  B then 

A − {a}  B − {b}. 

Proof: Let F: A→B be a bijection. 

Case 1: F(a) = b: Then the restriction of F to A − {a} is 

a bijection between A − {a} and B − {b}. 

Case 2: F(a) = c  b: Let F(d) = b. 

Then G: A−{a} → B−{b} defined by: 

G(d) = c and 

G(x) = x if x  d, is a bijection. ☺ 

 

 As we all know, if you remove one element from a 

finite set you have fewer elements. At this stage we 

haven’t defined ‘fewer’ so we must be content to say that 

we have a different number of elements if we remove one 

element from a finite set. 

  



 141 

Theorem 5: No natural number is equivalent to a proper 

subset of itself. 

Proof: Let P = {n  ℕ | n  a proper subset of n} and let 

S = ℕ − P. 

So S is the set of all natural numbers that are not 

equivalent to a proper subset of themselves. 

Clearly 0  S since the empty set has no proper subsets. 

Suppose n  S and n+  S. 

Then n+ contains a proper subset m such that m  n+. 

Let r  n+ − m. Now since n+ = n  {n}, m  may or may 

not contain  n. 

Case 1: n  m: Since r  m, r  n and so r  n. 

Now n+  m and n  n+ and n  m so by Theorem 4, 

n = n+ − {n}  m − {n}  n. 

Now r  m − {n} so m − {n}  n. 

But this means that n is equivalent to one of its proper 

subsets and so n  S, a contradiction. 

Case 2: n  m: Then m  n. 

Let F be a bijection from n+ to m. 

Since n  n+ and F(n)  m we conclude from Theorem 4 

that n = n+ − {n}  m − {F(n)}. 

But m − {F(n)}  m  n and so m − {F(n)} is a proper 

subset of n. 

Again it follows that n  S, a contradiction. 

 

It follows from Peano Axiom 5 that ℕ = S and so no 

natural number is equivalent to one of its proper subsets. 
☺ 
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 However, removing one element from an infinite set 

doesn’t change its size.  This is true for all infinite sets but 

here we only prove it here for ℕ, the set of all finite 

numbers. 

  

Theorem 6: ℕ is equivalent to a proper subset of itself. 

Proof: ℕ  {n  ℕ | n  0} under the bijection F(n) = n+. 
☺ 

 

 Likewise, adding one element to an infinite set does 

not change its size. Again we only prove it for ℕ at this 

stage. 

 

Theorem 7: ℕ  ℕ+. 

Proof: Define F(n+) = n, F(0) = ℕ.  

 

It seems intuitively obvious that if S  T then S+  T+ but 

we can’t prove it from the ZF axioms. We’d need the 

Axiom of Foundation. For suppose there was a set S for 

which S = {S}. Then S+ = S and although S  {0} = 1 it 

would not be the case that S+  1+ = 2. 

 

§9.2. Inequalities With Sizes of Sets 
Intuitively we have a notion, not just of two sets 

having the same size, but also of one set being smaller 

than another. Now by smaller we don’t just mean ‘proper 

subset’ otherwise we couldn’t compare the sizes of two 

disjoint sets. “Equivalent to a proper subset” would be 

better, and it is certainly adequate for finite sets. 
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Suppose we were in a classroom we saw that every 

student was seated and there was at least one empty 

student chair left over. We could say that there were more 

chairs than students. But if we made this concept the basis 

for ‘less than’ for infinite sets we would have to conclude 

that ℕ is smaller than ℕ+ despite them being the same size. 

 

Instead we define ‘less than or equals’ first, by 

defining S  T if S is equivalent to a subset of T and then 

defining S < T to mean that S  T and S  T. 

 

We define X  Y if there is a 1-1 function F:X→Y and 

                  X < Y if X  Y and X  Y. 

 

 For natural numbers we now have two definitions 

of ‘less-than-or-equals’. There is the one given in Chapter 

4, where m  n means ‘m  n or m = n’, (or equivalently, 

‘m  n’), and the one given here in terms of 1-1 functions. 

Naturally it would be very confusing if these gave a 

different ordering of the natural numbers. 

Fortunately they are equivalent definitions, in the 

sense that m  n under one definition if and only if m  n 

under the other. To begin with we need to show that it’s 

impossible to have a 1-1 function from n+ to n. 

 

Theorem 8: For all n  ℕ there is no 1-1 function from 

n+ to n. 

Proof: Suppose n  ℕ and suppose that F:n+→n is 1-1. 

Then n+  imF  n  n+. This contradicts Theorem 5. ☺ 
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Theorem 9: If m, n are natural numbers then m  n if and 

only if there is a 1-1 map from m to n. 

Proof: Suppose m, n  ℕ. 

Clearly, if m  n there’s a 1-1 function from m to n. 

Suppose that there’s a 1-1 function F:m → n. 

Either m  n, m = n or n  m. 

Suppose that n  m. 

Then n+  m. 

Hence there exists a 1-1 function G:n+→m. 

Then GF:n+ → n is a 1-1 function, 

                                               contradicting Theorem 10. 

Hence m  n or m = n. In either case m  n. ☺ 

 

Theorem 10: Every proper subset of a natural number is 

equivalent to a smaller one. 

Proof: We prove this by induction on n, the natural 

number. The statement holds for n = 0 vacuously since 0 

has no proper subset. 

Suppose it is true for n. If S  n+ then 

S  n or S = n or n  S. 

The conclusion is obvious in the first two cases. 

Suppose n  S. Then S − {n}  m < n by induction. 

Hence S  m+ < n+. ☺ 
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§9.3. Finite and Infinite Sets 
You’d probably say that most of the theorems in 

this section are obvious. For example, the set of natural 

numbers is infinite and any set that contains the natural 

numbers is infinite. But remember that we’re trying not to 

rely on intuition. The purpose of these proofs is not to 

convince you, but rather convince a theorem-checking 

computer program that mechanically processes 

statements from the axioms. 

 

How would you define the statements ‘the set S is 

infinite’ and ‘the set S is finite’. Clearly we need only 

define one of these with one being the negation of the 

other. Here are some possible answers: 

 

• S is infinite if S  ℕ: That’s no good because ℝ would 

not be infinite under this definition. 

 

• S is infinite if S  S+. That’s better, and it would be 

adequate for developing all of standard mathematics. But 

suppose there was a set S, where S = {S}. Then S+ = S  

{S} = S  S. By this definition such as set would be 

infinite even though it clearly has only one element! 

Now such sets play no role in mathematics and we 

could outlaw them by adopting an additional axiom to add 

to the standard ZF axioms. 

 

• S is infinite if [x  S → S − {x}  S] In this case a set 

S, where S = {S}, is clearly finite, as we’d expect. Note, 
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also, that  is finite vacuously because x  S is never 

TRUE. 

 

• S is finite if S  n for some n  ℕ. 

 

We’ll adopt the last definition. 

 

S is finite if  S  n for some n  ℕ. 

S is infinite if n  ℕ[S / n]. 

 

Theorem 11: ℕ is infinite 

Proof: If ℕ  n then n  ℕ  ℕ+  n+, contradicting 

Theorem 5. ☺ 

 

Theorem 12: If S is infinite then S  n for all n  ℕ. 

Proof: Suppose  S  is infinite. 

We prove that n[n  ℕ → S  n] by induction (Peano 

axiom 5). 

Let T = {n  ℕ | S  n}. 

Clearly S  0. This is because the empty set can be viewed 

as a 1-1 function from 0 to S. 

Hence 0  T. 

Suppose n  T. 

Then there exists a 1-1 function F:n → S. 

If F is onto then S  n and so S is finite. 

Hence there exists s  S such that s  im F. 
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Define G:n+ → S by: 

G(x) = 


F(x) if x  n

s if x = n
 . 

Since F  is 1-1 and s  im F it follows that G is 1-1. 

Hence n+  T. 

Thus T = ℕ and so S  n for all n  ℕ. ☺ 

 

Theorem 13: If S is infinite then S  ℕ. 

Proof: Suppose that S is infinite. 

Then, for each n  ℕ, there exists a 1-1 function 

Fn:n+ → S. 

It would be tempting to say that F: ℕ → S defined by F(n) 

= Fn(n) is 1-1, but just because each Fn is 1-1 doesn’t 

mean that F is. This is because the values of Fm(n) can 

vary with m. What we need is for Fn+1 to be an extension 

of Fn for all n  ℕ. 

 

Consider a triangular array: 

a11     

a21 a22    

a31 a32 a33   

… … … ……

an1 an2 an3…ann

  

where (i) each amn  S; 

          (ii) nm  n[amn = amm] and 

          (iii) mr  mt < r[amr  ams]. 

 

The elements in each column are equal and those 

in each row are distinct. 
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The last row gives a 1-1 function from n+ to S. 

Call such an array an S-triangle of depth n. 

It’s easy to see that if Tn is an S-triangle of depth n 

then there exists an S-triangle Tn+1, of depth n + 1, in 

which the first n rows are identical to Tn, for we define 

an+1,r = anr if r  n. 

Since S is infinite there exists s  S − {anr | r  n}. 

Define an+1,n+1 = c. Consequently we have an S-triangle T 

of infinite depth, with tij in the i-th row and j-th column.  

Define F: ℕ → S by t(n) = tnn that is, the n’th entry 

on the diagonal of T. 

It remains to show that F is 1-1.  Suppose that m < n. 

Being an S-triangle tmm = tnm  tnn and so F(m)  F(n). 

☺ 

 

Theorem 14: Subsets of finite sets are finite. 

Proof: Suppose T is an infinite subset of the finite set S. 

Suppose S  n and let F:S → n be a bijection. 

Since T is infinite, T  n+. 

Hence there exists a 1-1 function G:n+ → T. 

Since T  S there exists a 1-1 function H:T → S. 

Hence GHF:n+ → n is a bijection so n+  n, a 

contradiction. ☺ 

 

Theorem 15: If S, T are disjoint finite sets then S + T is 

finite. 

Proof: Suppose S  m and T  n where m, n  ℕ. 

Then there exist bijections F:S → m and G:T → n. 
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Define the bijection H:S + T → m + n by: 

H(x) = 


 F(x) if x  S

G(x) + m if x  T
 .☺ 

 

Theorem 16: If S, T are finite then so is S  T. 

Proof: Suppose S, T are finite. 

Then S  T = S + (T − S) is finite by Theorems 14 and 

15. ☺ 

 

Theorem 17: If S, T are finite then so is S  T. 

Proof: Suppose T  n. Then S  T  S  n. 

We prove by induction on n that S  n is finite 

                                                                     for all n  ℕ. 

The inductive step relies on the fact that: 

S  n+  (S  n) + S. ☺ 

 

Theorem 18: If S, T are finite then so is ST. 

Proof: Suppose T  n.  Then ST  Sn. 

We prove by induction on n that Sn is finite 

                                                                     for all n  ℕ. 

The inductive step relies on the fact that Sn+
  Sn  S. ☺ 

 

Theorem 19: (S)  2S 

Proof: Remember that 2S is the set of functions from S to 

2. As sets of ordered pairs these functions have elements 

of the form (x, 0) or (x, 1). 
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Let F:(S) → 2S be defined by F(x) = {(x, 1) | x  S} 

(this maps elements of  X to 1 and all other elements of  S  

to 0). 

Let G: 2S → (S) be defined by G(a) = {x | a(x) = 1}. 

It’s easy to see that these are inverse functions and hence 

are bijections. ☺ 

 

Theorem 20: S < (S). 

Proof: Clearly S  (S) since F(x) = {x} is 1-1. 

Suppose F:X → (X) is a bijection. 

Let z = F−1({x | x   F(x)}). 

Then z  F(z) if and only if z  F(z), a contradiction. 

Corollary:  < ( ) < 2() < … 

 

§9.4. The Schröder-Bernstein Theorem 
 So we’ve established that there are infinitely many 

sizes of infinite sets, although we haven’t yet defined the 

corresponding infinite numbers. When we do that we’ll 

expect that they’ll be comparable, just like the natural 

numbers. That is, if ,  are any two infinite numbers we 

expect that either  < ,  =  or  < , or equivalently 

that if    and   

 then  = . But 

for the time being 

we must be content 

to express this in 

terms of sets rather 

than their sizes. It’s 
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known as the Schröder-Bernstein Theorem. Suppose 

there’s a 1-1 function from X to Y and another from Y to 

X. From these two we have to somehow manufacture a 

bijection between these two sets. It’s not easy. 

 

Theorem 21 (Schröder-Bernstein): 

If X  T and Y  X then X  Y. 

Proof: Suppose that F:X → Y and M:Y → X 

                                                               are 1-1 functions. 

Let y  Y. 

If x  im M then M−1(x) is defined and is in Y. 

If M−1(x)  im F then F−1M−1(x)  Y is defined. 

So either (F−1M−1)n(x) is defined for all n or there exists a 

largest n such that (F−1M−1)n(x) is defined. In the latter 

case, either (F−1M−1)n(x)  im M or it is not. 

This gives rise to three cases: 

(1) (F−1M−1)n(x) is defined for all n; 

(2) There is a largest n such that (F−1M−1)n(x) is defined 

and is not in im M; 

(3) There is a largest n such that (F−1M−1)n(x) is defined 

and is in im M. 

 

In case (2) we say that (F−1M−1)n(x) is called the ultimate 

ancestor of x. We denote it by (x) and (x)  X. 

In case (3) we say that M−1(F−1M−1)n(x) is the ultimate 

ancestor of x. 

Again we denote it by (x) and (x)  Y. 

In case (1) x has no ultimate ancestor. 
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Let X1 = {x  X | x has no ultimate ancestor}. 

This corresponds to case (1).  

Let X2 = {x  X | (x)  X}. 

This corresponds to case (2).  

Let X3 = {x  X | (x)  Y}. 

This corresponds to case (3).  

 

Similarly we define ultimate ancestors of elements of Y, 

by swapping X and Y and swapping M and F. 

 

Let Y1 = {y  Y | y has no ultimate ancestor}. 

Let Y2 = {y  Y | (y)  Y}.  

Let Y3 = {y  Y | (y)  X}. 

 

Then M(X1) = Y1, 

         M(X2) = Y3 and 

         F(Y2) = X3. 

Moreover, M restricted to X1 and M restricted to X2 are 

both 1-1 and F restricted to Y2 is 1-1. 

Define H:X → Y by: 

H(x) = 


M(x) if x  X1

M(x) if x  X2

 F
−1(x) if x  X3

 . 

Then H is a bijection from X to Y and its inverse is  

H−1(y) = 


M−1(y) if y  Y1

M−1(y) if y  Y2

 F(y) if y  Y3

 . 
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You may find difficulty in following this argument. 

Consider the following analogy involving family trees. 

Suppose X is the set of all males who were ever born in 

Australia and suppose Y is the set of all females ever born 

in Australia (now living or dead). We’ll assume that every 

father and every mother has exactly one son and one 

daughter. But not every person in X or Y has children. 

(Ignore the younger sister in the following picture.) 

Let M:X →Y take a male to his mother and let F:Y 

→ X take a female to her father. Under our assumptions, 

F and G are 1-1 functions. You can’t have two males 

having the same mother because we’re assuming that 

each family with children only has one son and one 

daughter. 

We’ll also assume that 

these sons and daughters are 

born in Australia. So once 

somebody comes to 

Australia all their 

descendants will be born in 

Australia. It is, after all, a 

good country to live in! Why 

would anyone want to leave 

it?! 

 

As a model for Australian families it isn’t very 

good. But as an analogy for the proof of the Schröder-

Bernstein Theorem it works well. So MF will take a male 
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to his maternal grandfather and FM will take a female her 

paternal grandmother. 

 

Now we’re going to go back up the family tree. 

Take a man. His mother might have been born in 

Australia and her father might have also been born in 

Australia. Going back up the family tree we may 

eventually reach an ancestor who wasn’t born in 

Australia. Because Australia is a young country, I 

suppose we’d always reach an ancestor who was born 

overseas. Even indigenous people are not really 

‘aboriginal’ because if you could trace back their family 

tree for forty thousand years or more you’d probably 

reach someone born in Indonesia. 

But to make this analogy work we’ll also need to 

assume that there have been people living in Australia 

forever. Not just for 40,000 years but forever! So, under 

this assumption, there would be Australians (no doubt 

they’d be the real aboriginals) where, if you traced back 

their family tree, in the alternating way I’ve described, 

their infinitely many ancestors were all born in Australia. 

(I’m not casting any aspersions on the indigenous 

population of Australia. Although they were once 

immigrants themselves, they’ve lived here far longer than 

Europeans have been in Europe!) For other Australians, 

tracing back in this way, we’d reach someone who was 

born overseas. Call such an ancestor, an ultimate 

ancestor. Now such an ultimate ancestor will be either a 

man or a woman. 
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Let X1 be the set of all males with no ultimate ancestor. 

Let X2 be the set of all males whose ultimate ancestor was 

male. 

Let X3 be the set of all males whose ultimate ancestor was 

female.  

Let Y1 be the set of all females with no ultimate ancestor. 

Let Y2 be the set of all females whose ultimate ancestor 

was female. 

Let Y3 be the set of all females whose ultimate ancestor 

was male.  

Now follow the argument in the theorem. 

 

§9.5. Infinite Cardinal Numbers 
We still have some way to go 

before we are in a position to define 

cardinal numbers, the numbers that 

describe the sizes of sets. For the 

time being we’ll regard them as 

objects that are associated with sets 

so that equivalent sets have the same 

number.  We denote the cardinal 

number (size) of a set S by the 

symbol #S. 

We can still prove theorems 

about these, as yet undefined, numbers because each of 

those theorems can be expressed in terms of the relations 

 and . 
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 We follow the notation of Georg Cantor, who first 

considered infinite cardinal numbers, and denote the size 

of ℕ by the symbol 0. 

 We define #ℕ to be 1. This notation suggests 

that this is the next cardinal number after 0 and hence 

that there is no cardinal number between 0 and 1. If 

there was we might have to write it as something like 0.5, 

which we would be a bit clumsy. 

 In fact most books define 1 as the next cardinal 

number after 0 and the question is asked “Is 1 = 

#ℕ?” But we’re defining 1 = #ℕ and are asking “is 

there a cardinal number between 0 and 1?” 

 

 It can be shown that neither question can be 

answered. The Continuum Hypothesis states that the 

answers to the above questions are “yes” and “no” 

respectively. 

 For we who define 1 = #ℕ the Continuum 

Hypothesis states that there is no cardinal number 

between 0 and 1. For those who define 1 to be the 

next number after 0 it states that 1 = #ℕ. We’ll state 

it in terms of our definition of 1. 

 

Continuum Hypothesis: There is no cardinal number 

between 0 and 1. 

The name of this hypothesis arose from is fact that 

we can prove that the set of real numbers (the continuum) 

is equivalent to (ℕ). Then #ℕ = 0 and #ℝ = 1 and 
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the continuum hypothesis asserts that there is no cardinal 

number between them. 

 

 Now this statement has 

never been proved. It will never 

be proved. It can never be 

proved. There’s a theorem that 

proves that the Continuum 

Hypothesis is unprovable. It’s too 

long and too technical to present 

here. But it’s important that you 

understand what this theorem is 

saying. 

 

Theorem 22: The Continuum Hypothesis is consistent 

with, and independent of, the ZF axioms. 

Proof: As we said we won’t be presenting a proof, but 

here is some discussion of what such a proof involves.  

 

A set of axioms is consistent if no contradiction can 

arise from accepting them. The standard way of proving 

that a set of axioms is consistent is to construct a model 

that satisfies them. The group axioms are consistent 

because we can construct explicit examples of groups. 

 Now the annoying thing is that the ZF axioms have 

never been proved to be consistent. While it has never 

been proved that their consistency is unprovable, it seems 

reasonable to believe that it is. The problem is that in 

constructing models you have to make them out of 
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something, and if we can’t use sets it’s not clear what we 

could use. 

 The consequence of the fact that the ZF axioms 

haven’t been proved consistent is that there’s the 

possibility that some new paradox, like the Russell 

Paradox, might one day come to light. The whole of 

mathematics would seem to be built on a shaky 

foundation that could come tumbling down at any 

moment. 

But mathematicians aren’t worried by such a 

possibility. If such a calamity should ever arise all that 

would happen would be that the set theory axioms would 

be modified to fix the problem. The edifice of 

mathematics would still stand and most practising 

mathematicians wouldn’t even notice the change. That is 

indeed what happened when the Russell Paradox was 

pointed out. 

 

 To prove consistency we’d need to construct a 

model that satisfies the ZF axioms as well as the 

Continuum Hypothesis. We’d begin by assuming we have 

a model for the ZF axioms (thereby assuming that the ZF 

axioms are consistent). Then we construct special sets, 

and a membership relation between them, that is similar 

to the ones in ordinary set theory but which is modified in 

some way. We would then prove that in this modified 

model the Continuum Hypothesis holds. 

The upshot is a sort of relative consistency. If ZF 

is consistent then ZF + CH is consistent. If a paradox ever 
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arises when using the Continuum Hypothesis there must 

be an inconsistency in the ZF axioms themselves. 

 

The second part of the proof involves constructing 

a second model, again assuming that the ZF axioms alone 

are consistent. This second model is constructed in such a 

way that it’s possible to find a cardinal number between 

what corresponds, in this model, to 0 and 1. In other 

words we prove that if ZF is consistent then so is ZF + 

not(CH). If ever a paradox arises when assuming the 

existence of a cardinal number between 0 and 1 there 

must be an inconsistency in the ZF axioms alone. 

 

Such models showing the consistency and 

independence of the Continuum Hypothesis have been 

constructed.  

 

It comes down to what, in the religious world, 

would be called a matter of faith! We are logically free to 

either assert or deny the Continuum Hypothesis. But, 

while either possibility is equally valid, there’s a practical 

reason for accepting it. 

Certainly, while we can’t prove that there are no 

cardinal numbers between 0 and 1 we’ll never actually 

be able to find one. Clearly, if we could find such an 

explicit example we would, as a consequence, have a 

proof that the Continuum Hypothesis is false and this 

would contradict the proof that it is independent from the 

ZF axioms. 
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In other words, we apply Occam’s Razor, a 

principle that “of all the hypotheses that fit the facts, 

choose the simplest”. Throughout the rest of the notes 

we’ll assume the Continuum Hypothesis in addition to the 

ZF axioms. 

 

 We define the infinite cardinal numbers 0, 1, 

2, … inductively as follows: 

0 = #ℕ; 

n+1 = #(n) for n  ℕ. 

 

§9.6. The Arithmetic of Cardinal 

Numbers 
I define addition,  multiplication, and exponentiation of 

cardinal numbers as follows: 

Suppose a = #A and b = #B, where A, B are disjoint. 

Then: 

a + b is defined to be #(A + B); 

            ab is defined to be #(A  B); 

             ab is defined to be #(AB). 

The set of functions from 2 = {0, 1} to A is equivalent to 

(A) so #(A) = 2a. 

 The following arithmetic properties can be proved 

readily by setting up suitable bijections. 
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Theorem 23: 

(1) a + b = b + a 

(2) ab = ba 

(3) a + (b + c) = (a + b) + c 

(4) (ab)c = a(bc) 

(5) a(b + c) = ab + ac 

(6) 1a = a 

(7) 0a = 0 

(8) 0a = 0 (if a > 0), or 1 if (a = 0) 

(9) a  a 

(10) If a  b and b  c then a  c. 

(11) If a  b then a + c  b + c. 

(12) If a  b then ac  bc. 

(13) If a  b then ac  bc. 

Proof: These follow from the fact that corresponding sets 

are equal, or we can easily set up a bijection between 

them. ☺ 

 

Theorem 24: 

(1)  ab+c = ab.ac. 

(2) (ab)c = abc. 

Proof: Let A, B, C be disjoint sets such that #A = a, 

#B = b and #C = c. 

(1) Define :AB+C → AB  AC by (f) = (f |B, f |C). 

(2) Define : (AB)C → ABC by (f)(x, y) = f (y)(x). ☺ 
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Theorem 25: If 1 < a  b then a + b  ab. 

Proof: Let A, B be disjoint sets such that 

#A = a and #B = b. 

Let a0, a1  A and b0  B. Define f:A + B → A  B by 

f (x) = 


(x, b0) if x  A

(a0, x) if x  B
 . ☺ 

 

Theorem 26: If 0 < a  b then ca  cb. 

Proof: Let A, B, C be sets such that #A = a, #B = b 

and #C = c. 

If c = 0 the result is obvious, so suppose that c > 0. 

Let f: A → B be a 1-1 function and let u  C. 

If f is a function from A to C define (f):B→C by 

(f)(x) = 


f(u−1(x)) if x  im f

u if x  im f
 . ☺ 

 

Theorem 27: If a  2 then b < ab. 

Proof: We have done the case a = 2. 

So b < 2b  ab by Theorem 28. ☺ 

 

Theorem 28: 0 + a = 0 for all a  . 

Proof: Define f: ℕ → ℕ by f(x) = x + a. 

#im f = 0 and ℕ = im f + a. ☺ 

 

Theorem 29: 20 = 0. 

Proof: Define f: ℕ  2 → ℕ by f (x, y) = 


 2x if y = 0

2x + 1 if y = 1
 . 

☺ 
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Theorem 30: 0
2 = 0. 

Proof: Define f: ℕ  ℕ → ℕ by: 

f (x, y) = ½(x + y)(x + y + 1) + y. ☺ 

 

Theorem 31: m + n = nm = (m)n = m  

                                                                                                  for all 0  n  ℕ. 

Proof: Use Theorems 30, 31 and 32, as well as induction. 
☺ 

 

§9.7. Examples of Cardinal Numbers 
Example 1: #ℤ = 20 + 1 = 0. 

 

Example 2: 0  #ℚ  0
2 = 0, so #ℚ = 0. 

 

Example 3: 

1 = #{binary sequences} 

       #[0,1)  (represent these reals in decimals) 

        #{binary sequences}  (represent them in binary) 

        1. 

Hence, by Schröder-Bernstein: 

#[0,1) = #binary sequences = 1. 

 

Every real number corresponds to a pair (n, x) 

where the integer part n  ℤ and the fractional part x 

belongs to the interval  [0, 1). 

Hence #ℝ = 1.0 = 1. 

Thus #ℂ = 1
2 = 1. 
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§9.8. Applications of Cardinal Numbers 
Essentially the study of infinite set theory is an end 

in itself and for the most part mathematicians happily go 

on with their work without paying much attention to it. 

But there are some places where a theorem in some other 

area can be proved by applying infinite set theory. 

An algebraic number is a complex number  such 

that f() = 0 for some non-zero integer polynomial. The 

rest, if any, are called transcendental. While it’s a little 

difficult to prove that specific numbers, such as e and , 

are transcendental, the existence of transcendental 

numbers can be proved by observing that the number of 

algebraic numbers is 0 while the number of complex 

numbers altogether is 1. The fact that 0 < 1 shows 

that transcendental numbers must exist, and plenty of 

them! 

 Computer programs can be written that compute a 

specific real number by printing out its decimal 

expansion. Although it can only ever print out a finite 

number of decimal places in finite time, they can be 

written so that every decimal place will eventually appear 

if the program runs for long enough. A program to print 

out the decimal equivalent of a rational number such as 

22/7 would be very easy. One that printed out the decimal 

expansion of  would be somewhat harder, but it can be 

done. Can a suitable program be written for every real 

number. The answer is most definitely “no”. There are 1 

possible real numbers. But since a computer program is a 

finite string of symbols there are only 0 programs that 
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are possible, even if we had infinite time to write them. 

Therefore some (in fact the vast majority) of real numbers 

cannot be computed. 

 To give a specific example of such a number would 

be difficult; because once a number is described precisely 

it’s not too difficult to write a suitable computer program.  

The problem is that there can be only 0 possible 

descriptions so only 0 real numbers that can be defined. 

 

 Most of the applications of infinite cardinal 

numbers depend on recognising the difference between 

0 and 1. Occasionally 2 is used outside of infinite set 

theory. But the bigger cardinal numbers are never used. 

Their interest lies solely is satisfying one’s curiosity as to 

what is out there. 

 

§9.9. Even Bigger Cardinal Numbers 
 The list of cardinal numbers that we’ve described 

(though not yet defined as sets) goes well beyond what a 

mathematician would find useful. Yet these very large 

infinite numbers deserve to have their existence 

acknowledged. The situation is analogous to astronomers 

discovering remote galaxies that are so far from earth that. 

 their practical significance is zero. Yet we find them 

fascinating. 

 The numbers we’ve discovered so far come in two 

infinite lists: 0,    1,    2,    3, ……………. 

0, 1, 2, 3, …………… 
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 That’s exciting enough, but as they say in TV ads 

for steak knives, “there’s more”. That is, there’s an 

infinite cardinal number that is bigger than any of the 

n’s! 

 

 For each n  ℕ take a set Sn such that #Sn = n. 

For example we could take Sn to be nℕ. Now take their 

union {Sn | n  ℕ}. We define  to be the cardinal 

number of this set. 

 

Theorem 32: For all n  ℕ,  > n. 

Proof: Let n  ℕ. Then Sn+1  {Sn | n  ℕ} 

and so n+1  . 

But n < n+1 and so n < . ☺ 

 

 And, of course, it doesn’t stop there. We can define 

+1 = 2 and so begin a third row in our table. Having 

described the infinitely long 3rd row of cardinal numbers 

we can carry out a similar construction to the above get a 

4th row, the first entry of which is denoted by the symbol 

2. 

Why not 2? Ah, well, the symbol  represents 

something called an ordinal number and with the 

multiplication we’ll define then, 2 =  while 2 is 

bigger. But you’ll have to wait till we’ve discussed 

ordinal numbers. 
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 So we can produce infinitely many rows, each with 

infinitely many cardinal numbers, and we wouldn’t have 

them all. We can produce a second page corresponding to 

the union of all the sets that correspond to the numbers on 

the first page etc. Before 

long we’d have infinitely 

many libraries, each with 

infinitely many floors, 

each with infinitely many 

rooms, each with infinitely 

many shelves, each with 

infinitely many books, 

each with infinitely many pages, each with infinitely 

many rows, each infinitely long, and still there’d be even 

bigger numbers. 

 In fact it is easy to see that for every set of cardinal 

numbers there’s a cardinal number bigger than them all. 

If the set has a largest just raise 2 to that power. If it 

doesn’t, the same process that got us to  could be used. 

 

 So what about the set of all cardinal numbers? Can 

there really be one bigger than them all, which of course 

would mean that it would be bigger than itself? Certainly 

not. Yet we have outlined a proof, haven’t we? 

 Not quite. This paradox simply means that the class 

of all cardinal numbers is not a set. It must therefore be a 

proper class. 
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 We now know quite a bit about cardinal numbers 

but we haven’t actually defined them. They’re defined to 

be ordinal numbers with a certain property so we need to 

define ‘ordinal number’ first. But there is something more 

important to discuss in the next chapter – the Axiom of 

Choice. This is probably the most important part of 

Axiomatic Set Theory for other areas of mathematics. 

 

§9.10. Further Arithmetic of Cardinal 

Numbers 
Theorem 33:If a, b are cardinal numbers and a is finite 

and b is infinite then a + b = b. 

Proof: Choose disjoint sets A, B such that 

#A = a and #B = b. 

Let C  B such that #C = 0 and let D = B − C. 

Let #D = d. 

Then b = 0 + d so a + b = a + 0 + d 

                                         = 0 + d 

                                         = b. ☺ 

 

Theorem 34: If  a  is an infinite cardinal number then: 

a + a = a. 

Proof: Choose A so that #A = a. 

Let F = {bijections f : X  2 → X | X  A}. 

F  0 (take X with #X = 0). 

F is partially ordered by extension. 

By Zorn’s Lemma there exists a maximal function 

f:X  2 → X for some X  A. 



 169 

If A − X is infinite this contradicts the maximality of f so 

A − X is finite. 

#X + #X = #X and #A = #X + #(A − X) so 

#A + #A = #X + #X + 2#(A − X) 

               = #A + #(A − X) 

               = #A. ☺ 

 

Theorem 35: If a  b are cardinal numbers and b is 

infinite then a + b = b. 

Proof: Choose A, B with #A = a, #B = b. 

Since a  b, a + b  b + b = b. 

But b  a + b so a + b = b. ☺ 

 

Theorem 36: If a is an infinite cardinal number then: 

a.a = a. 

Proof: Choose A so that #A = a. 

Let F = {bijections f : X  X → X | X  A}. 

F  0 (take X with #X = 0). 

F is partially ordered by extension. 

By Zorn’s Lemma there exist maximal f: X  X → X 

                                                                for some X  A. 

Let #X = x. Then x.x = x. 

Suppose x < a. 

Then #(A − X) = a and so A − X has a subset, Y 

                                                                       with #Y = x. 

Then #[(X  Y) + (Y  X) + (Y  Y)] = 3x.x 

                                                              = x so 

there exists a bijection from 
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(X  Y) + (Y  X) + (Y  Y) to Y. 

We can thus extend f to a bijection 

g: (X + Y)  (X + Y) → X + Y, a contradiction. 

Hence x = a and so a.a = a. ☺ 

 


