9. CARDINAL NUMBERS

89.1. Equivalence of Sets

Most facts in the last few chapters will be well-
known to you. The novelty was in redeveloping them
within ZF set theory. We now turn our attention to infinite
set theory itself. We begin with infinite cardinal numbers.

We can’t count infinite sets in the same way as we
do finite sets. We need a definition of the size of a set
which, on the one hand agrees with our existing concept
for finite sets, but which applies to infinite sets as well.

Do we simply invent a number, oo, that we assign
to all infinite sets? (Of course there remains the question
of how we formally define ‘finite’ and ‘infinite’.) We’re
perfectly entitled to do this but we would miss out on the
interesting theory of transfinite numbers. We’d be in the
same position of a certain tribe of aborigines who, it has
been falsely claimed, had no word for numbers after
‘three’. They were
supposed to count
“one, two, three,
many”’.

A

Turn  your
mind back to the
days when you first
learnt to count. In
kindergarten,  we

Equivalent sets
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pointed to things, or pictures of things, as we said aloud
“one, two, three ...”. Essentially we were settingup a 1-1
correspondence between the things and a set of numbers
that we learnt. If we got up to ‘five’ then we said that the
number of things was five.

The concept of same-number-as is more
fundamental than numbers themselves. A glance around
a classroom of able-bodied people can reveal quickly that
there’s the same number of left arms as right arms. We
don’t need to count the left arms and the right arms and
say “there are 27 left arms and 27 right arms so there must
be the same number of each”.

Recall that a bijection is a function that is 1-1 and
onto. Two sets X, Y are equivalent (X = Y) if there is a
bijection F:X—Y.

Clearly ~ is an equivalence relation since it is
reflexive, symmetric and transitive. However it’s actually
a generalised relation rather than a relation in the sense of
a set of ordered pairs on the set of all sets, because there’s
no such thing as the set of all sets. Such an entity would
give rise to the Russell Paradox.

Given a set S, how can we define its size, or
cardinal number? As we saw in the last chapter,
equivalence classes are out. We might think of choosing
one particular representative of each size. That’s what
we’ll do to begin with for finite numbers and the smaller
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cardinal numbers, but as a general technique it has the
problem of choosing a representative. We will need an
additional axiom to do this. Let’s postpone this problem
and explore the basic facts about equivalence of sets.

Theorem 1: If A~ Cand B~ D and A, B are disjoint and
C, D are disjointthen AU B~ C U D.
Proof: Let F:A — Cand G:B — D be bijections. Define
H:AuB— CuD by:

_JFx)ifxe A

H() = {G(X) ifxcB"

The fact that A, B are disjoint means that H is well-
defined. The fact that C, D are disjoint means that H is 1-
1. It’s clearly onto. % ©

Theorem 2: IfA~Cand B~Dthen AxB~C x D.
Proof: Suppose F, G are as above.

Define H:A x B— C x D by:

H((x, y)) = (F(x), G(y)). It’s easy to check that this is a
bijection. % ©

Theorem 3: A=B —> p(A) = o (B).
Proof: Let F:A — B be a bijection.

Define H: p (A) — ¢ (B) by:

H(S) ={F(x) | x € S} forall S € p(A). Y©

Size need not be preserved under intersections,
however, as the following example shows.
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Example 1: Let A={1, 2, 3}, B={2, 3, 5},

C={1,2 3} D={3 4,5}
Then A~ Cand B~ D but An B = {2, 3} is not
equivalentto C N D = {3}.

It’s intuitively obvious that if we have two
equivalent sets, and take one element from each, the
remaining sets will be equivalent. It’s certainly obvious
for finite sets but we want to show that it holds for infinite
sets as well.

Theorem4: If AxBanda e A, b € Bthen
A -{a}~B-{b}.
Proof: Let F: A—B be a bijection.
Case 1: F(a) = b: Then the restriction of F to A — {a} is
a bijection between A — {a} and B — {b}.
Case 2: F(a)=c#b: Let F(d) =h.
Then G: A—{a} — B—{b} defined by:
G(d) =c and
G(x) =x if x # d, is a bijection. % ©

As we all know, if you remove one element from a
finite set you have fewer elements. At this stage we
haven’t defined ‘fewer’ SO we must be content to say that
we have a different number of elements if we remove one
element from a finite set.
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Theorem 5: No natural number is equivalent to a proper
subset of itself.

Proof: Let P ={n € N | n =~ a proper subset of n} and let
S=N-P.

So S is the set of all natural numbers that are not
equivalent to a proper subset of themselves.

Clearly 0 € S since the empty set has no proper subsets.
Supposen € Sandn* ¢ S.

Then n* contains a proper subset m such that m ~ n*.
Letr € n* —m. Now since n* =n u {n}, m may or may
not contain n.
Casel:nem:Sincergm,rnandsor e n.

Now n"~mandn € n"and n € mso by Theorem 4,
n=n"—{n}~m-{n}cn.

Nowr ¢ m—{n}som-—{n}cn.

But this means that n is equivalent to one of its proper
subsets and so n ¢ S, a contradiction.

Case2:n ¢ m: Thenmcn.

Let F be a bijection from n* to m.

Since n € n" and F(n) € m we conclude from Theorem 4
thatn=n*"—{n} ~m-{F(n)}.

But m — {F(n)} c mc nandsom- {F(n)} is a proper
subset of n.

Again it follows that n ¢ S, a contradiction.

It follows from Peano Axiom 5 that N = S and so no

natural number is equivalent to one of its proper subsets.
%O
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However, removing one element from an infinite set
doesn’t change its size. This is true for all infinite sets but
here we only prove it here for N, the set of all finite
numbers.

Theorem 6: N is equivalent to a proper subset of itself.
Proof: N ~ {n € N | n = 0} under the bijection F(n) =n".
YO

Likewise, adding one element to an infinite set does
not change its size. Again we only prove it for N at this
stage.

Theorem 7: N =~ N™.
Proof: Define F(n™) =n, F(0) = N.

It seems intuitively obvious that if S~ T then S* = T* but
we can’t prove it from the ZF axioms. We’d need the
Axiom of Foundation. For suppose there was a set S for
which S = {S}. Then S* = S and although S ~ {0} = 1 it
would not be the case that S* = 1" = 2.

§9.2. Inequalities With Sizes of Sets

Intuitively we have a notion, not just of two sets
having the same size, but also of one set being smaller
than another. Now by smaller we don’t just mean ‘proper
subset’ otherwise we couldn’t compare the sizes of two
disjoint sets. “Equivalent to a proper subset” would be
better, and it is certainly adequate for finite sets.
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Suppose we were in a classroom we saw that every
student was seated and there was at least one empty
student chair left over. We could say that there were more
chairs than students. But if we made this concept the basis
for ‘less than’ for infinite sets we would have to conclude
that N is smaller than N* despite them being the same size.

Instead we define ‘less than or equals’ first, by
defining S < T if S is equivalent to a subset of T and then
definingS<TtomeanthatS<Tand S=T.

We define X LY if there is a 1-1 function F: X—Y and
X<YifX<Yand X=Y.

For natural numbers we now have two definitions
of ‘less-than-or-equals’. There is the one given in Chapter
4, where m <nmeans ‘m € norm =n’, (or equivalently,
‘m < n’), and the one given here in terms of 1-1 functions.
Naturally it would be very confusing if these gave a
different ordering of the natural numbers.

Fortunately they are equivalent definitions, in the
sense that m < n under one definition if and only if m <n
under the other. To begin with we need to show that it’s
impossible to have a 1-1 function from n* to n.

Theorem 8: For all n € N there is no 1-1 function from
n* to n.

Proof: Suppose n € N and suppose that F:n*—n is 1-1.
Then n* = imF < n < n*. This contradicts Theorem 5. %©
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Theorem 9: If m, n are natural numbers then m < n if and
only if there is a 1-1 map from m to n.
Proof: Suppose m, n € N.
Clearly, if m < n there’s a 1-1 function from m to n.
Suppose that there’s a 1-1 function F:m — n.
Eithermen, m=norn e m.
Suppose thatn € m.
Thenn* < m.
Hence there exists a 1-1 function G:n*—m.
Then GF:n™ — nis a 1-1 function,

contradicting Theorem 10.
Hence m € n or m =n. In either case m < n. %©

Theorem 10: Every proper subset of a natural number is

equivalent to a smaller one.

Proof: We prove this by induction on n, the natural

number. The statement holds for n = 0 vacuously since 0

has no proper subset.

Suppose it is true for n. If S < n* then
ScnorS=nornesS.

The conclusion is obvious in the first two cases.

Suppose n € S. Then S — {n} ¥~ m < n by induction.

Hence S m* <n*. %©
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§89.3. Finite and Infinite Sets

You’d probably say that most of the theorems in
this section are obvious. For example, the set of natural
numbers is infinite and any set that contains the natural
numbers is infinite. But remember that we’re trying not to
rely on intuition. The purpose of these proofs is not to
convince you, but rather convince a theorem-checking
computer program that mechanically processes
statements from the axioms.

How would you define the statements ‘the set S is
infinite’ and ‘the set S is finite’. Clearly we need only
define one of these with one being the negation of the
other. Here are some possible answers:

e Sis infinite if S » N: That’s no good because R would
not be infinite under this definition.

e S is infinite if S ~ S*. That’s better, and it would be
adequate for developing all of standard mathematics. But
suppose there was a set S, where S = {S}. ThenS*=S U
{S} = S U S. By this definition such as set would be
infinite even though it clearly has only one element!

Now such sets play no role in mathematics and we
could outlaw them by adopting an additional axiom to add
to the standard ZF axioms.

e Sisinfinite if V[x € S > S — {x} ~ S] In this case a set
S, where S = {S}, is clearly finite, as we’d expect. Note,

145



also, that & is finite vacuously because x € S is never
TRUE.

e Sisfinite if S~ n for somen  N.
We’ll adopt the last definition.

Sis finite if S~ n forsomen e N.
Sisinfinite if Vn € N[S £ n].

Theorem 11: N is infinite
Proof: If N ~ nthen n N ~ N* ~ n*, contradicting
Theorem 5. %% ©

Theorem 12: If S is infinite then S > n for all n € N.
Proof: Suppose S is infinite.

We prove that Vn[n € N — S > n] by induction (Peano
axiom 5).

LetT={ne N|S>n}.

Clearly S >0. This is because the empty set can be viewed
as a 1-1 function from 0 to S.

Hence 0 e T.

Supposen € T.

Then there exists a 1-1 function F:n — S.

If F is onto then S ~ n and so S is finite.

Hence there exists s € Ssuch thats ¢ im F.
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Define G:n* — S by:
_JFX) ifxen
G(X)_{ sifx=n -
Since F is1-1and s ¢ im F it follows that G is 1-1.
Hencen* e T.
Thus T=NandsoS>nforalln e N. %©

Theorem 13: If S is infinite then S > N.
Proof: Suppose that S is infinite.
Then, for each n € N, there exists a 1-1 function

Fo:nt — S.
It would be tempting to say that F: N — S defined by F(n)
= Fn(n) is 1-1, but just because each Fn is 1-1 doesn’t
mean that F is. This is because the values of Fn(n) can
vary with m. What we need is for Fn.1 to be an extension
of Fhforalln € N.

di1
do1 d2

Consider a triangular array: 831 832 8s3

dn1 dn2 Anz...dnn
where (i) each amn € S;
(if) Yn¥m > n[amn = amm] and
(iil) YmVr < mVt < r[amr # ams].

The elements in each column are equal and those
in each row are distinct.
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The last row gives a 1-1 function from n* to S.
Call such an array an S-triangle of depth n.

It’s easy to see that if Ty is an S-triangle of depth n
then there exists an S-triangle Tns1, Of depth n + 1, in
which the first n rows are identical to Tn, for we define
an+1,r = anr If r <.

Since S is infinite there exists s € S — {anr | r < n}.
Define an+1n+1 = €. Consequently we have an S-triangle T
of infinite depth, with tjj in the i-th row and j-th column.

Define F: N — S by t(n) =t that is, the n’th entry
on the diagonal of T.

It remains to show that F is 1-1. Suppose that m <n.

Being an S-triangle tym = thm # thn and so F(m) = F(n).
%O

Theorem 14: Subsets of finite sets are finite.

Proof: Suppose T is an infinite subset of the finite set S.
Suppose S = n and let F:S — n be a bijection.

Since T is infinite, T > n".

Hence there exists a 1-1 function G:n* —> T.

Since T < S there exists a 1-1 function H:T — S.

Hence GHF.n* — n is a bijection so n* < n, a
contradiction. %©

Theorem 15: If S, T are disjoint finite sets then S+ T is
finite.

Proof: Suppose S¥mand T ~nwherem, n € N.

Then there exist bijections F:S — mand G:T — n.
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Define the bijection H:S + T — m + n by:

] FXx)ifxeS
H(X) = {G(x) imifxeT 0O

Theorem 16: If S, T are finite thensoisS U T.

Proof: Suppose S, T are finite.

Then SU T =S + (T - S) is finite by Theorems 14 and
15. %©

Theorem 17: If S, T are finite thenso is S x T.
Proof: Suppose T~n. ThenSx T~ S xn.
We prove by induction on n that S x n is finite
foralln € N.
The inductive step relies on the fact that:
Sxn*~(Sxn)+S. %O

Theorem 18: If S, T are finite then so is ST.
Proof: Suppose T ~n. Then ST~ S",
We prove by induction on n that S" is finite
foralln € N.

The inductive step relies on the fact that ST ~S"x S. %©

Theorem 19: o (S) = 2°

Proof: Remember that 2° is the set of functions from S to
2. As sets of ordered pairs these functions have elements
of the form (x, 0) or (x, 1).

149



Let F: o (S) — 25 be defined by F(x) = {(x, 1) | x € S}
(this maps elements of X to 1 and all other elements of S
to 0).

Let G: 25 — (S) be defined by G(a) = {x | a(x) = 1}.
It’s easy to see that these are inverse functions and hence
are bijections. % ©

Theorem 20: S< @(S).

Proof: Clearly S < o (S) since F(x) = {x} is 1-1.
Suppose F: X — ¢ (X) is a bijection.
Letz=F1({x|x ¢ F(X)}).

Then z € F(z) if and only if z ¢ F(z), a contradiction.
Corollary: o < p () < p%(o)<...

89.4. The Schroder-Bernstein Theorem

So we’ve established that there are infinitely many
sizes of infinite sets, although we haven’t yet defined the
corresponding infinite numbers. When we do that we’ll
expect that they’ll be comparable, just like the natural
numbers. That is, if o, B are any two infinite numbers we
expect that either oo < 3, o = 3 or B < a., or equivalently
thatifa<pandB< « B
o then o = B. But
for the time being
we must be content p— .I.
to express this in
terms %f sets rather @(. ¢ g

a B

than their sizes. It’s
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known as the Schroder-Bernstein Theorem. Suppose
there’s a 1-1 function from X to Y and another from Y to
X. From these two we have to somehow manufacture a
bijection between these two sets. It’s not easy.

Theorem 21 (Schréder-Bernstein):
If X<TandY <XthenX~=Y.
Proof: Suppose that F:X — Y and MY — X

are 1-1 functions.
Lety €Y.
If x € im M then M~}(x) is defined and is in Y.
If M~2(x) € im F then F*M~}(x) e Y is defined.
So either (F"*M1)"(x) is defined for all n or there exists a
largest n such that (F*M)(x) is defined. In the latter
case, either (FIM1)(x) € im M or it is not.
This gives rise to three cases:
(1) (F*MH(x) is defined for all n;
(2) There is a largest n such that (F*M1)"(x) is defined
and is not in im M;
(3) There is a largest n such that (F*M1)"(x) is defined
and is in im M,

In case (2) we say that (F"*M~1)"(x) is called the ultimate
ancestor of x. We denote it by a(x) and a(x) € X.

In case (3) we say that M(FIM1)"(x) is the ultimate
ancestor of x.

Again we denote it by a(x) and a(x) € .

In case (1) x has no ultimate ancestor.
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Let X; = {x € X | x has no ultimate ancestor}.
This corresponds to case (1).
Let Xo ={x € X | a(x) € X}.
This corresponds to case (2).
Let Xs={x e X|a(x) € Y}.
This corresponds to case (3).

Similarly we define ultimate ancestors of elements of Y,
by swapping X and Y and swapping M and F.

Let Y1 ={y € Y |y has no ultimate ancestor}.
LetY,={yeY|a(y) € Y}
LetYs={y e Y |a(y) € X}.

Then M(Xl) = Y1,
M(Xz) =Y3 and
F(Yz) = Xas.
Moreover, M restricted to X, and M restricted to X, are
both 1-1 and F restricted to Y, is 1-1.
Define H:X — Y by:
M(x) if x € X3
H(x) = { M(x) ifx € X5 .
F1(x) if x e X3
Then H is a bijection from X to Y and its inverse is
M-1(y) ify e Y3
H(y) = {Ml(y) ifyeY,.

F(y) ify € Y3
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You may find difficulty in following this argument.
Consider the following analogy involving family trees.
Suppose X is the set of all males who were ever born in
Australia and suppose Y is the set of all females ever born
in Australia (now living or dead). We’ll assume that every
father and every mother has exactly one son and one
daughter. But not every person in X or Y has children.
(Ignore the younger sister in the following picture.)

Let M:X —Y take a male to his mother and let F:Y
— X take a female to her father. Under our assumptions,
F and G are 1-1 functions. You can’t have two males
having the same mother because we’re assuming that
each family with children only has one son and one

daughter.
We’ll also assume that
these sons and daughters are @

born in Australia. So once

somebody comes to =\ 2
Australia all their ‘;“@ PO S
descendants will be born in

Australia. It is, after all, a £ f'\’f‘i‘ A
good country to live in! Why &2 bt ol =l

would anyone want to leave
it?!

As a model for Australian families it isn’t very
good. But as an analogy for the proof of the Schroder-
Bernstein Theorem it works well. So MF will take a male
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to his maternal grandfather and FM will take a female her
paternal grandmother.

Now we’re going to go back up the family tree.
Take a man. His mother might have been born in
Australia and her father might have also been born in
Australia. Going back up the family tree we may
eventually reach an ancestor who wasn’t born in
Australia. Because Australia is a young country, |
suppose we’d always reach an ancestor who was born
overseas. Even indigenous people are not really
‘aboriginal’ because if you could trace back their family
tree for forty thousand years or more you’d probably
reach someone born in Indonesia.

But to make this analogy work we’ll also need to
assume that there have been people living in Australia
forever. Not just for 40,000 years but forever! So, under
this assumption, there would be Australians (no doubt
they’d be the real aboriginals) where, if you traced back
their family tree, in the alternating way I’ve described,
their infinitely many ancestors were all born in Australia.
(’'m not casting any aspersions on the indigenous
population of Australia. Although they were once
immigrants themselves, they’ve lived here far longer than
Europeans have been in Europe!) For other Australians,
tracing back in this way, we’d reach someone who was
born overseas. Call such an ancestor, an ultimate
ancestor. Now such an ultimate ancestor will be either a
man or a woman.

154



Let X, be the set of all males with no ultimate ancestor.
Let X, be the set of all males whose ultimate ancestor was
male.

Let X3 be the set of all males whose ultimate ancestor was
female.

Let Y, be the set of all females with no ultimate ancestor.
Let Y, be the set of all females whose ultimate ancestor
was female.

Let Y3 be the set of all females whose ultimate ancestor
was male.

Now follow the argument in the theorem.

89.5. Infinite Cardinal Numbers

We still have some way to go
before we are in a position to define
cardinal numbers, the numbers that
describe the sizes of sets. For the
time being we’ll regard them as
objects that are associated with sets
so that equivalent sets have the same
number. We denote the cardinal
number (size) of a set S by the
symbol #S.

We can still prove theorems
about these, as yet undefined, numbers because each of
those theorems can be expressed in terms of the relations
<and ~.
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We follow the notation of Georg Cantor, who first
considered infinite cardinal numbers, and denote the size
of N by the symbol Xo.

We define # @ N to be X1. This notation suggests
that this is the next cardinal number after X, and hence
that there is no cardinal number between o and ;. If
there was we might have to write it as something like N,
which we would be a bit clumsy.

In fact most books define N as the next cardinal
number after No and the question is asked “Is ¥; =
# (N?” But we’re defining X1 =# @ N and are asking “is
there a cardinal number between g and ,?”

It can be shown that neither question can be
answered. The Continuum Hypothesis states that the
answers to the above questions are “yes” and “no”
respectively.

For we who define 8; = #pN the Continuum
Hypothesis states that there is no cardinal number
between N, and ;. For those who define N; to be the
next number after N it states that ;1 = # o N. We’ll state
it in terms of our definition of N;.

Continuum Hypothesis: There is no cardinal number
between N and ;.

The name of this hypothesis arose from is fact that
we can prove that the set of real numbers (the continuum)
is equivalent to g (N). Then #N = X, and #R = N; and
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the continuum hypothesis asserts that there is no cardinal
number between them.

The Consistency

Now this statement has ) of the
b d. It will never Continuum Hypothesis
never peen proved. by Kurt Gidel

be proved. It can never be =
proved. There’s a theorem that
proves that the Continuum
Hypothesis is unprovable. It’s too
long and too technical to present
here. But it’s important that you
understand what this theorem is “o

Saying. With a Foreword by

Dr. Richard Laver

Theorem 22: The Continuum Hypothesis is consistent
with, and independent of, the ZF axioms.

Proof: As we said we won’t be presenting a proof, but
here is some discussion of what such a proof involves. %

A set of axioms is consistent if no contradiction can
arise from accepting them. The standard way of proving
that a set of axioms is consistent is to construct a model
that satisfies them. The group axioms are consistent
because we can construct explicit examples of groups.

Now the annoying thing is that the ZF axioms have
never been proved to be consistent. While it has never
been proved that their consistency is unprovable, it seems
reasonable to believe that it is. The problem is that in
constructing models you have to make them out of
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something, and if we can’t use sets it’s not clear what we
could use.

The consequence of the fact that the ZF axioms
haven’t been proved consistent is that there’s the
possibility that some new paradox, like the Russell
Paradox, might one day come to light. The whole of
mathematics would seem to be built on a shaky
foundation that could come tumbling down at any
moment.

But mathematicians aren’t worried by such a
possibility. If such a calamity should ever arise all that
would happen would be that the set theory axioms would
be modified to fix the problem. The edifice of
mathematics would still stand and most practising
mathematicians wouldn’t even notice the change. That is
indeed what happened when the Russell Paradox was
pointed out.

To prove consistency we’d need to construct a
model that satisfies the ZF axioms as well as the
Continuum Hypothesis. We’d begin by assuming we have
a model for the ZF axioms (thereby assuming that the ZF
axioms are consistent). Then we construct special sets,
and a membership relation between them, that is similar
to the ones in ordinary set theory but which is modified in
some way. We would then prove that in this modified
model the Continuum Hypothesis holds.

The upshot is a sort of relative consistency. If ZF
Is consistent then ZF + CH is consistent. If a paradox ever

158



arises when using the Continuum Hypothesis there must
be an inconsistency in the ZF axioms themselves.

The second part of the proof involves constructing
a second model, again assuming that the ZF axioms alone
are consistent. This second model is constructed in such a
way that it’s possible to find a cardinal number between
what corresponds, in this model, to No and X1. In other
words we prove that if ZF is consistent then so is ZF +
not(CH). If ever a paradox arises when assuming the
existence of a cardinal number between o and X there
must be an inconsistency in the ZF axioms alone.

Such models showing the consistency and
independence of the Continuum Hypothesis have been
constructed. %

It comes down to what, in the religious world,
would be called a matter of faith! We are logically free to
either assert or deny the Continuum Hypothesis. But,
while either possibility is equally valid, there’s a practical
reason for accepting it.

Certainly, while we can’t prove that there are no
cardinal numbers between N and N; we’ll never actually
be able to find one. Clearly, if we could find such an
explicit example we would, as a consequence, have a
proof that the Continuum Hypothesis is false and this
would contradict the proof that it is independent from the
ZF axioms.
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In other words, we apply Occam’s Razor, a
principle that “of all the hypotheses that fit the facts,
choose the simplest”. Throughout the rest of the notes
we’ll assume the Continuum Hypothesis in addition to the
ZF axioms.

We define the infinite cardinal numbers o, N1,
N2, ... inductively as follows:
No = #N;
Nna1 =#p(X,) forn e N.

89.6. The Arithmetic of Cardinal

Numbers
| define addition, multiplication, and exponentiation of
cardinal numbers as follows:
Suppose a = #A and b = #B, where A, B are disjoint.
Then:
a + b is defined to be #(A + B);
ab is defined to be #(A x B);
a° is defined to be #(AB).
The set of functions from 2 = {0, 1} to A is equivalent to
@(A)so#p(A) =22
The following arithmetic properties can be proved
readily by setting up suitable bijections.

160



Theorem 23:
()a+b=b+a
(2) ab =ba
(a+(b+c)=(@+b)+c
(4) (ab)c = a(bc)
(5)a(b+c)=ab+ac
(6) la=a
(7)0a=0
(8)02=0(ifa>0),or1if (a=0)
(99a<a
(10)Ifa<bandb<cthena<c.
(1) Ifa<bthena+c<b+c.
(12) If a < b then ac < bc.
(13) Ifa<bthena® <b".

Proof: These follow from the fact that corresponding sets

are equal, or we can easily set up a bijection between
them. %©

Theorem 24:

(1) ab*c=aP.a’.

(2) (ab)c = gPc

Proof: Let A, B, C be disjoint sets such that #A = a,

#B =band #C = c.

(1) Define 0:AB*C —» AB x AC by 0(f) = (f|g, T o).

(2) Define 0: (AB)¢ — AR by 0(f)(x, y) = (y)(x). %©
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Theorem 25: If L <a<bthena+ b <ab.
Proof: Let A, B be disjoint sets such that
#A =aand #B =b.
Letag, a; € Aand by € B. Definef:A+ B —> A x B by

_J(X, bo) ifx € A
f(X)_{(ao,i)ifXEB'\“%@

Theorem 26: 1f 0 <a < b then ¢ < c®.

Proof: Let A, B, C be sets such that #A =a, #B =D
and #C =c.

If ¢ = 0 the result is obvious, so suppose that ¢ > 0.
Let f: A— B beal-1function and letu e C.

If f is a function from A to C define 6(f):B—C by

[fU9) if X € im f
e(f)(x)‘{ ifxgimf - 7©

Theorem 27: If a > 2 then b < aP.
Proof: We have done the case a = 2.
So b < 2° < aP by Theorem 28. %®©

Theorem 28: KXo+ a = Noforall a € .
Proof: Define f: N —» N by f(x) =x + a.
#imf=NpandN=imf+a %©

Theorem 29: 2o = No.

Proof: Definef: Nx2 — Nbyf(x,y) = {2
)

2xify=0
x+1lify=1"
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Theorem 30: RXo? = No.
Proof: Define f: N x N —» N by:
f(x,y) =%Xx+y)x+y+1)+y. %O

Theorem 31: Xm+n=n8m=(8m)" = Nn
forall0 =#n € N.

Proof: Use Theorems 30, 31 and 32, as well as induction.
%©

§9.7. Examples of Cardinal Numbers
Example 1: #Z =280 + 1 = X,.

Example 2: 8o <#Q < Xo? = Ny, 50 #Q = No.

Example 3:

N1 = #{binary sequences}
<#[0,1) (represent these reals in decimals)
< #{binary sequences} (represent them in binary)
< N1

Hence, by Schréder-Bernstein:

#[0,1) = #binary sequences = ;.

Every real number corresponds to a pair (n, Xx)
where the integer part n € Z and the fractional part x
belongs to the interval [0, 1).

Hence #R = X1 Np = N1.
Thus #C = le = .
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§9.8. Applications of Cardinal Numbers

Essentially the study of infinite set theory is an end
in itself and for the most part mathematicians happily go
on with their work without paying much attention to it.
But there are some places where a theorem in some other
area can be proved by applying infinite set theory.

An algebraic number is a complex number o such
that f(a) = O for some non-zero integer polynomial. The
rest, if any, are called transcendental. While it’s a little
difficult to prove that specific numbers, such as e and ,
are transcendental, the existence of transcendental
numbers can be proved by observing that the number of
algebraic numbers is X, while the number of complex
numbers altogether is 1. The fact that No < N1 shows
that transcendental numbers must exist, and plenty of
them!

Computer programs can be written that compute a
specific real number by printing out its decimal
expansion. Although it can only ever print out a finite
number of decimal places in finite time, they can be
written so that every decimal place will eventually appear
if the program runs for long enough. A program to print
out the decimal equivalent of a rational number such as
22/7 would be very easy. One that printed out the decimal
expansion of = would be somewhat harder, but it can be
done. Can a suitable program be written for every real
number. The answer is most definitely “no”. There are N
possible real numbers. But since a computer program is a
finite string of symbols there are only &, programs that
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are possible, even if we had infinite time to write them.
Therefore some (in fact the vast majority) of real numbers
cannot be computed.

To give a specific example of such a number would
be difficult; because once a number is described precisely
it’s not too difficult to write a suitable computer program.
The problem is that there can be only N, possible
descriptions so only N, real numbers that can be defined.

Most of the applications of infinite cardinal
numbers depend on recognising the difference between
No and N;. Occasionally X5 is used outside of infinite set
theory. But the bigger cardinal numbers are never used.
Their interest lies solely is satisfying one’s curiosity as to
what is out there.

89.9. Even Bigger Cardinal Numbers

The list of cardinal numbers that we’ve described
(though not yet defined as sets) goes well beyond what a
mathematician would find useful. Yet these very large
infinite numbers deserve to have their existence
acknowledged. The situation is analogous to astronomers
discovering remote galaxies that are so far from earth that.
their practical significance is zero. Yet we find them
fascinating.

The numbers we’ve discovered so far come in two
infinite lists: 0, 1, 2, 3, ................

No, 81, N2, N3y oo
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That’s exciting enough, but as they say in TV ads
for steak knives, “there’s more”. That is, there’s an
infinite cardinal number that is bigger than any of the

&n,S!

For each n € N take a set Sp such that #S5n = Nn.
For example we could take Sy to be ¢ "N. Now take their

union U{Sn | n € N}. We define X to be the cardinal
number of this set.

Theorem 32: Forall n e N, X¢ > Np.

Proof: Letn € N. Then Sp:y < U{Sn|n € N}
and so Nn+1 < No.

But 8n < Np+1 and so Xy < Ne. YO

And, of course, it doesn’t stop there. We can define

Now =250 and so begin a third row in our table. Having
described the infinitely long 3" row of cardinal numbers
we can carry out a similar construction to the above get a
4™ row, the first entry of which is denoted by the symbol

Nw2.

Why not X,»? Ah, well, the symbol ® represents
something called an ordinal number and with the
multiplication we’ll define then, 20 = ® while ©2 is

bigger. But you’ll have to wait till we’ve discussed
ordinal numbers.
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So we can produce infinitely many rows, each with
infinitely many cardinal numbers, and we wouldn’t have
them all. We can produce a second page corresponding to
the union of all the sets that correspond to the numbers on
the first page etc. Before
long we’d have infinitely
many libraries, each with
infinitely many floors,
each with infinitely many
rooms, each with infinitely
many shelves, each with

- == infinitely many books,
each with infinitely many pages, each with infinitely
many rows, each infinitely long, and still there’d be even
bigger numbers.

In fact it is easy to see that for every set of cardinal
numbers there’s a cardinal number bigger than them all.
If the set has a largest just raise 2 to that power. If it

doesn’t, the same process that got us to N could be used.

So what about the set of all cardinal numbers? Can
there really be one bigger than them all, which of course
would mean that it would be bigger than itself? Certainly
not. Yet we have outlined a proof, haven’t we?

Not quite. This paradox simply means that the class
of all cardinal numbers is not a set. It must therefore be a
proper class.
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We now know quite a bit about cardinal numbers
but we haven’t actually defined them. They’re defined to
be ordinal numbers with a certain property so we need to
define ‘ordinal number’ first. But there is something more
important to discuss in the next chapter — the Axiom of
Choice. This is probably the most important part of
Axiomatic Set Theory for other areas of mathematics.

§89.10. Further Arithmetic of Cardinal

Numbers
Theorem 33:If a, b are cardinal numbers and a is finite
and b is infinite thena + b = b.
Proof: Choose disjoint sets A, B such that
#A =aand #B = b.

Let C = B such that #C = Xpand let D =B - C.
Let #D = d.
Thenb=No+dsoa+b=a+ Ng+d

=No+d

=h. %O

Theorem 34: If a is an infinite cardinal number then:
ata=a.
Proof: Choose A so that #A = a.
Let F = {bijectionsf: X x2 - X | X c A}.
F = 0 (take X with #X = K).
F is partially ordered by extension.
By Zorn’s Lemma there exists a maximal function
f:X x 2 —> X forsome X c A.
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If A — X is infinite this contradicts the maximality of f so
A — Xis finite.
#X +#X =#X and #A = #X + #(A — X) so
HA + #A = #X + #X + 2#(A - X)
=#A + #(A - X)
=#A. YO

Theorem 35: If a < b are cardinal numbers and b is
infinite thena + b = b.

Proof: Choose A, B with #A = a, #B = b.
Sincea<b,a+b<b+b=bh.
Butb<a+bsoa+b=Db %O

Theorem 36: If a is an infinite cardinal number then:
aa=a.
Proof: Choose A so that #A = a.
Let F = {bijectionsf: X x X - X | X < A}.
F = 0 (take X with #X = ).
F is partially ordered by extension.
By Zorn’s Lemma there exist maximal f: X x X — X
for some X c A.
Let #X =x. Then x.x = x.
Suppose x < a.
Then #(A — X) =aand so A — X has a subset, Y
with #Y = x.
Then #[(X x Y) + (Y x X) + (Y x Y)] = 3x.x
=X SO0
there exists a bijection from
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KXxY)+(¥YxX)+(YxY)to.
We can thus extend f to a bijection
g: (X+Y)x(X+Y)—> X+Y,acontradiction.
Hencex=aandsoa.a=a. %©
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